2,349 research outputs found

    Method of evaporation

    Get PDF
    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled

    Modelling ion populations in astrophysical plasmas: carbon in the solar transition region

    Full text link
    The aim of this work is to improve the modelling of ion populations in higher density, lower temperature astrophysical plasmas, of the type commonly found in lower solar and stellar atmospheres. Ion population models for these regions frequently employ the coronal approximation, which assumes conditions more suitable to the upper solar atmosphere, where high temperatures and lower densities prevail. Using the coronal approximation for modelling the solar transition region gives theoretical lines intensities for the Li-like and Na-like isoelectronic sequences which can be factors of 2-5 times lower than observed. The works of Burgess & Summers (1969) and Nussbaumer & Storey (1975) showed the important part ions in excited levels play when included in the modelling. Their models, however, used approximations for the atomic rates to determine the ion balance. Presented here is the first stage in updating these earlier models of carbon by using rates from up-to-date atomic calculations and more recent photo-ionising radiances for the quiet Sun. Where such atomic rates are not readily available, in the case of electron-impact direct ionisation and excitation--auto-ionisation, new calculations have been made and compared to theoretical and experimental studies. The effects each atomic process has on the ion populations as density changes is demonstrated, and final results from the modelling are compared to the earlier works. Lastly, the new results for ion populations are used to predict line intensities for the solar transition region in the quiet Sun, and these are compared with predictions from coronal-approximation modelling and with observations. Significant improvements in the predicted line intensities are seen in comparison to those obtained from zero-density modelling of carbon.Comment: Draft accepted by A&A, 13 pages, 15 figure

    Fluid-driven deformation of a soft granular material

    Full text link
    Compressing a porous, fluid-filled material will drive the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through the Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multi-scale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding

    Brownian Dynamics of a Sphere Between Parallel Walls

    Full text link
    We describe direct imaging measurements of a colloidal sphere's diffusion between two parallel surfaces. The dynamics of this deceptively simple hydrodynamically coupled system have proved difficult to analyze. Comparison with approximate formulations of a confined sphere's hydrodynamic mobility reveals good agreement with both a leading-order superposition approximation as well as a more general all-images stokeslet analysis.Comment: 4 pages, 3 figures, REVTeX with PostScript figure

    Equilibrium Commodity Prices with Irreversible Investment and Non-Linear Technology

    Get PDF
    We model equilibrium spot and futures oil prices in a general equilibrium production economy. In our model production of the consumption good requires two inputs: the consumption good and a commodity, e.g., Oil. Oil is produced by wells whose flow rate is costly to adjust. Investment in new Oil wells is costly and irreversible. As a result in equilibrium, investment in Oil wells is infrequent and lumpy. Even though the state of the economy is fully described by a one-factor Markov process, the spot oil price is not Markov (in itself). Rather it is best described as a regime-switching process, the regime being an investment `proximity' indicator. The resulting equilibrium oil price exhibits mean-reversion and heteroscedasticity. Further, the risk premium for exposure to commodity risk is time-varying, positive in the far-from-investment regime but negative in the near-investment regime. Further, our model captures many of the stylized facts of oil futures prices, such as backwardation and the `Samuelson effect.' The futures curve exhibits backwardation as a result of a convenience yield, which arises endogenously. We estimate our model using the Simulated Method of Moments with economic aggregate data and crude oil futures prices. The model successfully captures the first two moments of the futures curves, the average non-durable consumption-output ratio, the average oil consumption-output and the average real interest rate. The estimation results suggest the presence of convex adjustment costs for the investment in new oil wells. We also propose and test a linear approximation of the equilibrium regime-shifting dynamics implied by our model, and test its empirical implication for time-varying risk-premia.
    • …
    corecore